| - FEs 2y
g1y W03 95959
(/Vﬁos"" ch - 5’/‘5J/&;

JPL-TR-32"2%

(8]
Technical Report No. 32-23

A Generalized Ohm’s Law of Plasma

Ching-Sheng Wu

CALIF,G-Rm* INSTHUYTEOF TECHJ;etO'G_Y v
' .~ PASADENA, CALIFORNIA" :

' l
03
| j 1 B | 474>
JET PROPULS!ON LABORATORY '

May 10, 1960




NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASH coNTRacT NS, NASW-6 )

Technical Report No. 32-23

A Generalized Ohm’s Law of Plasma

Ching-Sheng Wu

W, .o’

(ool V.

Robert V. Meghreblian, Chief
Physics Section

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

May 10, 1960



Technical Report No. 32-23 Jet Propulsion Laboratory

Copyright © 1960
Jet Propulsion Laboratory
California Institute of Technology




Jet Propulsion Laboratory

Technical Report No. 32-23

CONTENTS
o BRIPOAUCHON coeieeeeieieeiercete et e e et rse st e esasssesras s tass s en e ba et s s seusensasaeassonsssesenssassbenas 1
Il.  Generalization of the Chapman — Cowling Discussion of Current Density ................ 3
Il.  An Altemative Derivation from the Thermodynamics of the Irreversible
PrOCESS ..ouiceecrercreuencncseoseataseaeasetamsesse st et sessmsaseneshsbts bt asasba s s srea e st ss b e bbb e R R e bR R e anen 13
IV, CONCIUSIONS ...ceeerecceetrerieneteserenntsensteraessr e s e sse saseessussrossenseesesesssesssseressasssesssseussssssnssnssnnas 21
REFEIONCES ...ttt ceeetesenesesstseserae s ra s eeseressesastossaeetsasst bt srenerassistatossaesassarsnsnsssesnnrsnsans mebasens 23

cee
[27]




Jet Propulsion L aboratory Technical Report No. 32-23

ABSTRACT

A generalized Ohm’s law is derived for ionized
gas in the presence of electrical and magnetic fields with
arbitrary orientations. Two different methods are used in
the analysis but the results are in complete agreement. It
is found that in general when the magnetic field and the
electrical field are neither parallel nor perpendicular, an
additional current normal to both the direct current and the
Hall current is theoretically observed.

I.  INTRODUCTION

It has been realized for a long time that only under certain special conditions may the
classical Ohm’s law — which states that the current is proportional and parallel to the electrical
field, or in mathematical terms simply J = 0 E — be used in the study of ionized gas. For the
generalization of this classical Ohm’s law, contributions have been given by many authors, for
example, Chapman, Cowling, Spitzer, and Finkelnburg and Maecker (Ref. 1-4). Generalization may
be generally considered in two different directions; one is to extend the definition of E as the
effective electrical field which may include the field generated by the diffusion phenomena due to
pressure gradient and concentration gradient and the other is to generalize the classical Ohm’s
law in such a way that the Hall effect may be taken into account. In Ref. 1, a fairly general
expression of electrical current is derived on the basis of kinetic theory. However, only two
special cases are discussed in detail: in one case the magnetic field B is assumed to be parallel
to E, and in the other B is perpendicular to E. In Ref. 2, Cowling has derived a generalized

Ohm’s law in an implicit form

J+wr 1) xB =0E' (@)

based on a much simpler theory. However, again only two special cases are discussed: B|| E and

BLlE. Spitzer's expression of Ohm’s law (Ref. 3) takes into account the unsteady effect, and his
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result agrees with Cowling’s in the steady-state case. The result derived by Finkelnburg and

Maecker (Ref. 4) also expresses the electrical current in an implicit form, namely

1 1 Mei 1 1
J=0c|lE+ —(vxH - JxH + —m— —-—gradpe———gradp‘) (2)
c ,

enc elm, +m) \ p, o

The purpose of the present paper is to derive a more general and explicit expression of
the electrical current J. Two different methods will be used. The first method will be shown in
Section II, which follows the technique used in Ref. 1 but will remove the assumption that B is
perpendicular to E. The result gives some novel features besides the classical Hall effect. The
second method, which is based on the irreversible process of thermodynamics, will be demonstrated
in Section IIl. The final result is obtained in a form different from that given in Ref. 4 but agrees
with what is shown in Section II. This explicit expression of current density J may be considered

as a generalized Ohm’s law which takes the form

[E'+ wTB 1B x E") + w272B"2B(B-E")]

J =0

1+ w22
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. GENERALIZATION OF THE CHAPMAN — COWLING
DISCUSSION OF CURRENT DENSITY

Considering an ionized gas of two charged species, Chapman and Cowling (Ref. 1) dis-
cussed the solution of the Boltzmann equation to the second approximation. If f} and fy are the

distribution functions of the two species, then f, and f, satisfy

3[1 ofy ey of;
R Vl . + ——(E + Vl X B) T = —]l(ffl) - ]12(f1[2) (3)
ot or my avl
ofy ofy e ofy
Tt ver T+ — E t vy x B) s — = =L{ff) = Iy {fyf) @
ot or m, avz

where ]l(ffl) is the collision integral which describes the change of f1 due to the interaction
between particles of species 1 and J12{f1f5) is due to the interaction between particles of species
1 and 2. The integrals Jo(ff5) and J31(f3f;) are similarly defined for fo- Postulating that the
distribution function f{ may be written in the form fi = f{o) + f{l), where f{ D is a second

approximation which is much smaller than the first approximation f(O) two successive approxi-

l b
mations may be obtained from Eq. (3).
e Bff())
— Vy x B —— = [ (fO§0) _ (rl0)ffo)) (5)
my avl
Dof{0 3O e Dyv]  of®
+ V- +| —(E + vxB) ~ _
Dt or m, Dt v,
e 8[{1) ‘afl(O) v
+ — (V] x B): - 1 —
my avl aVl or
- _]l(f(O)[{l)) - ]l(f(l)f{O)) - ]lz(f{l)féo)) - ]12(f{0)f§1)) (6)
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The notations used hereafter are mostly adopted from Ref. 1, except the velocities and

the fields. V, denotes the peculiar velocity and v the velocity of the mixture (in Chapman ~

Cowling notation V; = C, and v = cg)- The differential operator D/Dt is defined in Ref. 1, p. 113.

The solution of f{o) may be found as
3

2

my -m V2/2KT

FO = n, e T1 )
27 KT

where n; and T are the number density and temperature of the first gas. Now, rewriting f%l) =

f{m (D(ll) and using the relations

Doy dv
+ny — =0 (8)
Dt or
Dyv op
el = (nje) + ngey) (E + v x B) + SV - — 9)
Dt or
Dy T 9
iKn = ~KnT N no=ng o+ g (10)
Dt or
Eq. (4) may be put in the form
my v mii s\ 1 3T m
fio) ——V{)VI:——+VI —_— - = — + —d,' Y
KT or 2KT 2 T ©or ny
(1
my o e, B(I)l)
=_f§0) vl.(Jl x B) + — (V; x B) -
2 1)
= 021 @) — nyngl @1 + o)) (11)

TP N ST
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where d,, is a vector quantity which is defined as

Byng
PP

= + ——— . ——
12 or npp or PP

Onyg  myng(mg—m;) Op P1Pe [ € €9
d (m2e1 —m1e2)v x B

N _ 1 (1)
J()—nlel<V{)>+n2e2<V2 >

Ds _ [Q1
ny <V{D> = [f{Vv av,

and the operators [, and I, are defined in Ref. 1, p. 85. An equation similar to Eq. (11) may be
derived for the second gas simply by changing the sign of d;,. Thus

2

m ? my Vg 5\1 09T ny
o] 2 yoy . %
O =0y, 4y,

-y - —dl2 ‘ v2
KT or P KT 2/ T or "o
mgy ey 3‘13(21)
= 9 | —=—v,. D xB) + — (V, x B) -
PKT ™1 ay,
~ n2l, (@) ~ n nyly) (@) + &) (12)
According to Chapman and Cowling,
1 °T = 9
oD = A .- — -3 M ~nyD, - dpy (13)
r o or
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o 1 9oT = DOov
oy = ~Ayr — — - By: — —nDy-dyy 14)
T r or

The quantities A, B and D are to be determined. Since the purpose of the present discussion is to
understand the electrical current density due to diffusionl, only the vector D shall be studied. In
general D is a function of V| and B. It is argued in Ref. 1 that since only the vector product of

V x B appears in the mechanical equations, D; can only depend upon V;, V, x B, (V| x B) x B,

etc. Therefore, it is justifiable to write

D, = DIv, + DI'(v, x B) + DI'(V, x B) x B

where the unknown coefficients D{, D{I, and D{H are functions of the magnitude of V1 and B. To

discuss the diffusion phenomena only, it is possible to write

o) = —nd, . [DIV, + DIV, x B) + DII(V x B) x B]

But

(V; x B) x B = B(B-V) - B2V,
There is, therefore, no loss of generality, if the expression is rewritten
V) = —nd), - [D]V, + DIV, x B) + DIIB(B - V))] (15)
Similarly
@V = —ndy, - [DIV, + DIL(V, x B) + DJ'B(B - V,)] (16)
With (15) and (16), the current density J(1) may be expressed in terms of ®{1) and ®.1) as follows

J(l)

i

ey JFO WDV v, + e, f fé(’)q)(zl)vzdv1

-n[L'd, + LB x d |, + L'1B(B - d,,)] (17)

1 For the time being, the thermal diffusior will be ignored.
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where

€1 €2
I 1,(0)y,2 I ((0)y 2
Ly ¥ flel vidv, + 5 fD2 £,OvEdv,

it

€1 €2
n _ _ 117(0)y 2 11 £(0) 2
LY {3 fDl fOvav, + < “/'1)2 $Ov2av,

€1 €2
m _ 11 £(0) 12 111 £(0) 1,2
Ly -+ _/"D1 noviavy + = f02 O viav,

Substituting Eq. (15), (16), and (17) into the equation

(n
2o, v - @) Ty g0 g Ly B i
— i Y= - 1 x B+ 1 X2

1 oKT my Bvl

- {n%ll(d)(ll)) + n1n2112(<l>(1n + (I>(21))} (18)

which is the reduced form of Eq. (11), and equating the terms having coefficients d,,, B x d

12’ 12
and B(B . dl2)’ three equations are obtained as follows:
1 ™ €1
(0) _ (0) IHp2 IHp2 2 I
;_fl Vl——f1 - — LB V1+—DlB V1 +n111(D1V1)
1 PKT my
+ "1"2112(D{VI + D;Vz) (19)
(0) "1 ‘1 27 (pll 11 1
0 = —fl - lel + — Dlvl + "lll(Dl Vl) + nln2112(D1 V1 + Dy V2) (20)
PKT ™
€]
0= f{‘”{ — D{Ivl} + n2L, OV + nyny 1,0y, + pllly,) (21)
m
1
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velocity space. Thus

—ff(mv Oy, - LHBzfmlf{O)a(IO)vldvl _ %11_ Bsz§°)€6°(1°)'°(1°)"v1
+ f [21,(D'V) + nynyl,(DIV; + DIV,)1a{DaV, (26)
} __ffm)y a0 av, - — L"Bzf”‘zf{m"zvzdvz _ %fféo) et ol - o2y,
+ f (n21,(DIVy) + nyngly, D3V, + DIV)1alD Y, (2

Adding Eq. (27) to (26) yields

' p2
nyny€qB nyng€yg
@K% = - — = (e mypy + egm p)) + KT ———— (28)
p? n(Dyg)y

because

1 1 3
fffO)Vl"(lO)dVl Tl ffémvz"(zmdvz - — (2KD*
n Ry 2
my ff{‘”vla(lmdv1 + my ffé‘”vza;mdvz =0

el e
— B2ff{°>e;)a(1°) a{Ddy, + —~ B2 ffg” epa® - a0 av,
1

Mg

2.2
3, P1Py | 1M €ony

= —B + €9
2 2 2 2 2 2

P nymy ngmy
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Similarly for the second species:

1 "2 1pe ‘1
- — Oy, =~ - —— LYB*V) + — DYB2V 5+ nil, (DLV,)
m KT my 20 Nt rala sty
+ ngnylyy (DYVy + DIV) (22)
(0) L 2 27 (pll Il 11
PKT 2
(23)
e
2
- rlo) J£¢ 2 111 IH 11
0=f5 ;2- Dy’ Vy > + ngly(Dy V) o+ nyngley(DyVy + Dy V,) (24)
Following the same approximation used by Chapman and Cowling in discussing the
special case that B is perpendicular to E, the first approximation is
ply, = ¢, a0 DIV. — €. a® )
11 = €09 2v2 = €092
Hy _ ¢ o0 II_I(O)L
DIy, = €(a® DIV, = €faf (25)
IMly _ 11 4(0) Iy _ ¢t ql0)
Dy"Vy = €59y Dy Yy = €g 92

J/

where the vectors a; and a, have been originally introduced in Ref. 1, and in first approximation

0(10) and 0(20) may be defined as
P PP
N L w1 Ly,
PRy 9KT pPrg 2KT

In order to determine the unknown coefficients €, €., and €4, Eq. (19) is first multiplied by

a(lo), and Eq. (22) by 0(20), and integrated with respect to V; and V, respectively throughout the
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and

f [n21,(DIV) + nynyl,, DLV, + DIVYIa{® dV,

. f [n31,(DLV,) + nynyly, (DEV,) + DIV)]a®aV,

3 ™Mmy KTe
= nyny€ [a(® . a(0)] = 5
n
(Dl2)l
Following Chapman and Cowling, denote?
Bleymypy + egmy py) mymgn(Dyg))
- = w and =T
m1m2,0 pPKT
Then Eq. (28) becomes
P1P2 P1Pe 1 P1P2 1
(21(7')1/2 = - 66 (Bw) + €9 — = + ebBw + €y ~—:| (29)
P P T £ T

By adopting the similar technique, it is readily shown from Eq. (20) - (24) that

-Blejo + € ; =0 (30)
-Blejw + eb’% =0 (3D

Substituting €( = + B™le w7 into Eq. (29) and solving for €:
€ = (2K o T (32)

2 The win the following is defined slightly different from that defined in the Reference because,
in general, e 1M9Pg * €gmy pl] <0.

10
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Hence € and € may be solved from Eq. (30) and (31) immediately:

, (2KT)%p< B lwr? )
€ +

0= (33)
PPy \1 + w272
(2KD%p ( B 2273
€=+ (34)
PPy N1+ w?72
Also,
oV = —nd;, - [D]V; + DJL(V, x B) + DMIB(B . V)]
= ~nld)y- €qal® + €48 1alD . (Bxd,) + gl . B2B(B - d;,)]
%
2KT)"? T
= — np(2KT) [“'12 . 0(10) + w‘TB-la(lo) - (B x d;,)
PPy 1+ wl7?
+ 2728728 (B - d,,) - o{"] (35)
Correspondingly
%
®(21) . np(2KT) ( T >[d12 . 0(20) + wTB"la(zo) (B x dyy)
PiPgy 1+ w72
+ w272B72B(B - d},) - al] (36)

Hence

my mo

e ey dig+ @TB71(B x d},) + w?72B"2B(B - d,,)
J - <_ > poT (37)
1+ w272

n
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If an effective electrical field E'is introduced such that

(m1 - m2) mym,
E'=E+vxB+ Vp - i Vn o
nleymy — egmy) P1Pg | (eymy — egm))

and a conductivity o is defined as follows

nyng
o = (elm2 - e2ml)27'
pm my

then Eq. (27) may be rewritten as

E' “1(B x E’ 272p-2B(B - E'
JO _ | Bl @TB (B x E) + 077 B-E) (38)
1+ w272

Equation (38) is a generalized result, whereas the discussion given by Chapman and Cowling

assumed that B is perpendicular to E .

12
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Ill. AN ALTERNATIVE DERIVATION FROM THE THERMODYNAMICS
OF THE IRREVERSIBLE PROCESS

The previous result is based on classical kinetic theory and the method of solution was
originally devised by Chapman and Enskog. An attempt is made in the present Section to find an
alternative derivation of what has been previously obtained. The purpose of doing this is to see
whether these two methods are fundamentally consistent. If they are consistent, the two different
approaches should yield the same result or at least the results ought to be compatible from the

physical or mathematical point of view.

It is a straightforward matter to obtain the energy equation of a gas mixture from the

Maxwell-Boltzmann equation of transfer (Ref. 5); thus:

s
Dh 1 D = €
LU I B P

Dt o Dt i=1 m;

(E + <v;> x B) (39)

where

L3
Q = Z p; <€,;V¥,> = heat flux
i=1
€, = specific intemal energy
V, = peculiar velocity of particle of species i

h = the specific enthalpy of the mixture

S
T = Z P; <Vi0vi > = viscous stress tensor3
i=1
<v,> = averaged velocity of the particles of species i

f, = p; <V;> = diffusion flux of species i

Since the main purpose of the present discussion is to compare the result obtained by irreversible

thermodynamics to that obtained previously, the discussion will be restricted to the similar

3 The notation Vlr0 V; is defined in Ref. 1, p. 18.

13
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physical conditions that the gas contains only two species and that no chemical reaction is taking

place. Then, on further application of the thermodynamic law,

2
1
Tds = dh - — dp - Z w;de, (40)
i=1
where
Pi
¢; = — = relative concentration of species {
Je
#; = chemical potential of species i
s = specific entropy of the gas mixture
the energy equation (39) may be written as
2 2
D Dec. - e.
pT—s=—din—pr. l+¢gradv+2f.-—i(E+<V«>xB)
Dt " Do omy L
i=1 i=1
(41)
However,
De;
P = - divf,
Dt
thus
2
Q- = 2
Ds , oy i grad T 1 K
p—=—-div——m—— - Q- ——Zfl T grad —
Dt T T2 T [ T
€ 1 =
- —(E+<vi>><B) + — 7 grad v (49)
™ T

14
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Now, according to the theory of irreversible thermodynamics (Ref. 6), the phenomenological

equations can be established in the following

H1 €1
f1=112 T grad T —m_l(E+<vi>XB)

o €9 T
+ 112 Tgrad <7>— Tn; (E + <V2> X B) + 113 graT - (43)

M1 €]
f2=121 T grad 7 -——(E+<vi>xB)

H1 €9 ad T
+ 1oy | T grad <—)— — (E + <vy> x B) + Iy & : (44)

mg

1 €1
Q=1 | Tgrad | — | =~ — (E + <v;> x B)
T my

Ho €9 ad T
+ 15, Tgrad(——)— — (E + <vy> x B)| + Igq e (45)
T Mo
Since according to the definition of fi
fl + f2 =0
then
Iy = -1y (46)
Iy = ~ 1y (48)

15
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In general, the Onsager’s reciprocal relation must be imposed in such a way that
113(8) =I31(_B)

However, since I11 and I, should be even functions of B, from Eq. (46) and (47), it is

concluded that 112 and 121 should also be even functions of B. Therefore,
112(8) = 121(—8) = ]21(3)

In the following discussion, since the thermal diffusion will not be considered, more

detailed discussion of the phenomenological coefficients will be unnecessary. Thus, the diffusion

flux fl may be written as

82 el 62 el .
f1:111\7p,+<~———> E+<———<v2>——<v1>>xB (49)

My my Mg my

where 1 = f1) ~ po. If the diffusion coefficients are defined in such a way that*

k k k e e
T 2 1
’lz_le.‘Z Ve + — VT + v—in+—£<—-——>E
T p P \™g ™y

kf ey €
+ — ——<v2>——<v1>xB
p moy my

the following relations may be deduced:

<a#>
PD 1o oP Jo.T

Iy=- — —— ky=-p——— kp= ————  (50)

Jde o T dc o T

41t will be shown later that the diffusion coefficient D12 defined here agrees with that appearing

in the previous section.

16
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because

9 9 9
Vu - (—’i> Ve + <_’i> VT + <_“> Vp
dc p.T oT p.e 9p e.T

where ¢ = - Again, since for perfect gas p = [c/m1 + (1 - c)/mz] PKT where K = Boltzmann’s

constant, the following relations are obtained:

L)
<_“> - KT (51)
Je o T c(l1-¢) [cm2 + (l—c)ml]

(3_,;) A (1 1> (52)
op T p m mg

mymy n(my = my) Py Py
kp = (m2 - ml)"1"2("1 + n2) 3 = ; (53)
P P
mym n2,0
1M 1P2
b= —————— (54)
3
£
Hence
(my=m)npypy P1Py €y €y
f. = —pD Ve + Vp ~ nlm. m — - — |E
1 12 3 3 172 m m
P3p PP 1 2
€] €9
+ | — <v;> - — <v,>| xB (55)
™ Mgy

17
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Now, if the part concerning ordinary diffusion is rewritten in terms of the gradient of the ratio

nl/n (or nlO)’ then

2
nemym, (m2--m1)n1n2
= ——— Dy VAot ———— Vp
P n pp

P1Pe € €2 €1 €2
- <__ _>E+ <—— <v;> ~ ————<v2>> x B
op ™ Mo ™1 T2

or

n2 (mg—m)nyn,
<V> - <V, - - Dy Vnyp+ ———— p
ning npep

P1Pg €1 €9 €y €9
- — = —JE+ [ — <v;> - — <v,>) x B|>(56)
PP my Mo ™ Mo

Here it may be seen that the diffusion coefficient D, is the same as that used in Ref. 1
(p- 144). Again, since

€1 €9 € €9
— - — | E + ;<v1>— — <vg> x B
1 Mo my Mg

€1 €9 €1 €9
= — « —J(E+vxB) + f,xB
my My my Py Mg Pg

Equation (55) may thus be written as

+

nDigleymgpy + egmy Py
fl - X
o2KT

- —— D, VU

n?mymy (my —my)nyny P1Pg [€1 €2
o 12 npp Po

18
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Denoting

"'"1'"2012

PKT

Bleymgpy + egmy Py)

- = w
pmym,
Eq. (57 becomes
n,2m1m2 (mz-—ml)nln2
fl + c«)’TB-'l’1 xB=- ——— D12 ano + ——— Vp
o np P
P1Pe [ €1 €9
- — - —}(E+vxB (58)
PP \my My

But, {1 is related to J through the equation

€1 €9
J=(— - =)4
™y Mo

Thus, multiplying all tems in Eq. (58) by (e;/m; — ey/m,) and defining

nyngn )
o = ; (elm2 - ezml) D,y
P KT

Eq. (58) may be written in the following form:

-1 my =My 1
J+wmB Yy xB=c|(E+vxB)+ Vp
€1Mg

- Vn 10 (59)

19
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Using the definition of E' given in the previous section,

J+wTB Y1) xB =0E'

Evidently, the solution of J may be verified to be

E'+ wTB 1B x E' + w272B"2(B . E")

[ S
I
q

1+ wt?

which agrees with what has been obtained in Section II.

20

(60)

(61)
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IV.  CONCLUSIONS

It should be pointed out again that the result obtained in the previous discussions
manifests only an approximate form of the actual current density, because the analysis has been
idealized by many imposed assumptions which simplify considerably both the mathematical task
and the physical complexity of the problem. For instance, the investigation is based on classical
kinetic theory, in which the collision mechanism is considered to be binary and the coulomb
interaction is ignored. These simplifications may cause certain errors; the qualitative picture of

the result, however, is believed still significant.

The generalized Ohm’s law obtained in previous discussions must be understood to be
independent of themoelectrical effect because the temperature gradient is postulated to be
negligible in the previous analyses. Therefore, the so-called Ettingshausen and Nemst effects

are not included. Further extension of the discussion along this line should not be very difficult.

The generalized Ohm’s law just mentioned reveals one interesting feature which may be
stated in the following. If three unit vectors il’ iy and iy are designated in three orthogonal
directions E, (B x E) and E x (B x E) respectively and "y is denoted as the angle between B

and E, then the current density J may be expressed as

J = Jyiy + Jgig + Jgig

where

1+ w272 cos?
Y B

1+ w2T?2

]2=(7 wT sin Yy L
1+ w272

2.2
w*T in Y cos
Iy =0 2 y>E'
1 +c«)2'r2

], is the generalized Hall current. The Hall conductivity is seen to be a function of the
angle ¥ besides w and T(7 is the angle between the vectors B and E). It is interesting to note
8 g g

21
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that /, vanishes in the case B is either parallel or perpendicular to E, which are the situations

customarily considered in the existing literature.

Finally, it should be remarked that it is not surprising to obtain agreement between the
two methods demonstrated in Sections II and III since the fundamental assumptions involved in
these methods are equivalent. For example, in Section II the classical Boltzmann equation in
kinetic theory is used without considering the coulomb interactions; in Section III, the same
assumption is implicitly employed when the derivatives (3,u/ap)c, 7 O/ ac)p’T, etc. are eval-
uated based on the perfect gas condition. Again, in Section II, discussion of the solution is, up
to the second approximation, based on the Chapman-Enskog technique in which the distribution
functions of the electrons and ions are assumed to be slightly disturbed from the Maxwellian
distributions. This is evidently consistent with the approximations involved in the establishment

of the linear phenomenological relations in the theory of irreversible thermodynamics.
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